Abstract

The flexural rigidity of cylindrical specimens, composed of epoxy reinforced by short, magnetized glass fibers, was enhanced using weak magnetic fields (<100 mT). By spatially controlling the magnitude and direction of the field, and thereby the torques and forces acting locally on the fibers, the orientation and concentration of the fillers in the matrix could be tuned prior to curing. Unidirectional alignment of the fibers, achieved using an air-core solenoid, improved the contribution of the fibers to the flexure modulus by a factor of 3. When a ring-shaped permanent magnet was utilized, the glass fibers were migrated preferentially near the rod boundary, and as a result, the contribution of the fibers to the flexure modulus doubled. The fiber length, density, and orientation distributions were extracted by μCT image analysis, allowing comparison of the experimental flexure modulus to a modified rule of mixtures prediction. The ability to magnetically control the fiber distribution in reinforced composites demonstrated in this study may be applied in the fabrication of complex micro- and macroscale structures with spatially variable anisotropy, allowing features such as crack diversion, strengthening of highly loaded regions, as well as economic management of materials and weight.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call