Abstract

Currently, most matrices developed for matrix-assisted laser desorption/ionization mass spectrometry (MALDI-TOF MS) for small-molecule detection are only suitable for the positive or negative ion mode and not the dual-ion mode, except for carbon-based nanomaterials. The lone-pair electrons on the N atom in poly n-vinylcarbazole (PVK) can serve as a Lewis base with strong electron-donation effects, which is favorable for negative ion mode detection. The surface of single-layer graphene oxide (SLGO) contains many oxygen atoms in carboxyl and hydroxyl groups that act as Lewis acids and thereby provides favorable protonation sites for positive ion mode detection. In this study, composite PVK/SLGO was prepared by combining the advantages of amorphous PVK and SLGO. PVK/SLGO was tested as a novel matrix for positive- and negative-ion-mode MALDI-TOF MS for the analysis of amino acids, nucleic acid bases, environmental endocrine disruptors, antibiotics, and various small molecules. PVK/SLGO was compared with PVK, SLGO, and commercially available matrices of 9-aminoacridine (9-AA) and α-cyano-4-hydroxycinnamic acid (CHCA). The PVK/SLGO matrix was demonstrated to be suitable for the positive and negative ion modes, exhibiting high signal intensity and detection sensitivity without background interference. The limits of detection of the aforementioned molecules ranged from 0.1 to 0.0001 and 0.01 to 0.0001 mg/mL in the positive and negative ion modes, respectively. The quantitative determination of enrofloxacin in milk was realized using an internal standard method with a linear range of 0.0001-0.1 mg/mL (R 2 = 0.9991). Furthermore, the PVK/SLGO matrix exhibited high salt tolerance (up to 1000 mmol/L) and stability over 28 consecutive days. Studies regarding its ionization mechanism revealed that the good performance originates from the combined materials acting synergistically. This study provides a foundation for developing bimodal composite matrices and further expands the scope of PVK/SLGO applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call