Abstract

Abstract This study aims to fabricate far-infrared (FIR)/electromagnetic shielding composite fabric and its composite yarn. Five types of composite yarns with different sheath components were made by using bamboo charcoal (BC) fibers, phase change material (PCM) roving and stainless steel (SS) fibers via a ring spinning frame, and then fabricated into five elastic warp-knitted fabrics with different weft yarns using a crochet knitting machine. The mechanical properties of different constituents of composite yarns and their fabrics, as well as FIR emissivity and electromagnetic shielding effectiveness (EMSE) of resulting fabrics were evaluated. The results show that BC/SS composite yarns and their fabricated warp-knitted fabrics display the highest tensile strength. Warp-knitted fabrics containing BC fibers possess the highest FIR emissivity. EMSE of the fabricated warp-knitted fabrics improves proportionally with the number of the lamination layers. The resulting multifunctional elastic knitted fabrics apply as athletic clothing, underwear, socks, protective or healthcare products in the future.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call