Abstract

Eco-friendly polymer composites in the form of granules based on biodegradable polycaprolactone (PCL) with the inclusion of montmorillonite (MMT) from 5 to 50 wt% were prepared by solution-casting and melt extrusion. The physicochemical properties of the composite granules were studied using FTIR spectroscopy, XRDA, DSC, and TGA methods. The paper presents comparative values of crystallinity of composite granules which depend on the method of measuring (XRDA, DSC). It was shown that the crystallinity of PCL/MMT granules was affected by the preparation method and by the MMT content, and that with increase in MMT content, crystallinity increased by up to 61-67%. The change in crystallinity of the granules also affected its biodegradation in soil. At the end of exposure in soil, the mass loss for the granules prepared by solution-casting was more than 90%, whereas for the composite granules prepared by extrusion it was less than 60%. Applying melt extrusion enabled obtaining intercalated composites with predictable features, whereas only mixed-structure microcomposites could be prepared by solution-casting.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.