Abstract

The Fibonacci topological order is the simplest platform for a universal topological quantum computer, consisting of a single type of non-Abelian anyon, $\tau$, with fusion rule $\tau\times\tau=1+\tau$. While it has been proposed that the anyon spectrum of the $\nu=12/5$ fractional quantum Hall state includes a Fibonacci sector, a dynamical picture of how a pure Fibonacci state may emerge in a quantum Hall system has been lacking. Here we use recently proposed non-Abelian dualities to construct a Fibonacci state of bosons at filling $\nu=2$ starting from a trilayer of integer quantum Hall states. Our parent theory consists of bosonic "composite vortices" coupled to fluctuating $U(2)$ gauge fields, which is related to the standard theory of Laughlin quasiparticles by duality. The Fibonacci state is obtained by clustering the composite vortices between the layers, along with flux attachment, a procedure reminiscent of the clustering picture of the Read-Rezayi states. We further use this framework to motivate a wave function for the Fibonacci fractional quantum Hall state.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.