Abstract

Composites of visible-light-active bamboo charcoal powder (BCP)/TiO2 were fabricated by the straight calcination method by using TiCl4 as the source of titanium and natural bamboo as the carbon source. The dispersion of TiO2 nanoparticles was observed onto the surface of the BCP. The introduction of microstructure sizes of the bamboo powder played an important role in enhancing the optical properties of BCP/TiO2 composites. The composites of BCP/TiO2 showed the photocatalytic activities both under visible-light irradiation and UV irradiation. The methylene blue dye was used as the experimental check-up. The photodegradation reactions followed zero-order and pseudo-first-order kinetics. In the time duration of 100 min, about 58.31% and 95% of methylene blue were degraded by TiO2 and BCP/TiO2, respectively; 60 min more time was required by TiO2 to achieve 93% of degradation. This suggests that addition of BCP helps in the reduction in time and also shows high durability after up to four cycles having the degradation efficiencies of 95%, 94.1%, 92.7% and 86.6%, respectively. Hence, this research could overlay in the domain of green energy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call