Abstract

In this contribution, a composite from bentonite (B), CoFe2O4 (CF), and hydroxyapatite (HAP) was developed by chemical synthesis route for adsorption of a lead ion, Pb (II) from wastewater. Initially, a composite of B/CF was synthesized by varying the weight ratio of CF, i.e., (1–x)B/(x)CF (x = 0.05, 0.15, 0.25, 0.50), followed by ternary composite synthesis, which was formulated from the sample of (0.85B/0.15CF) and different weight ratios of HAP, i.e., (1–y)[(0.85B/0.15CF)]/yHAP where y = 0.25, 0.35 and 0.45 weight ratios of HAP. The sample of 0.85B/0.15CF was found to be optimal in its adsorption capacity of about 20 mg g−1 from the binary composite samples, while among the ternary composites, a sample with a composition of 0.65[(0.85B/0.15CF)]/0.35HAP revealed an optimum adsorption capacity of about 36 mg g−1, which was then selected for further studies. The adsorption kinetics of Pb (II) by the optimum 0.65[(0.85B/0.15CF)]/0.35HAP sample was studied at different contact times from 30–120 min, where the equilibrium was reached at around 90 min of contact time and the kinetic behavior adopted Pseudo-second order adsorption mechanism. The initial concentration of Pb (II) was also varied from 50–200 mg l−1 to study the adsorption isotherm, which resulted that adsorption capacity of 0.65[(0.85B/0.15CF)]/0.35HAP towards Pb (II) was increased to about 66 mg g−1 and the adsorption isotherm data best fitted with Langmuir adsorption isotherm model. Therefore, the result of this study pinpoints that the present composite material is a potential candidate for the adsorption of Pb (II) ion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.