Abstract
Adaptive support vector regression (ASVR) applied to the forecast of complex time series is superior to the other traditional prediction methods. However, the effect of volatility clustering occurred in time-series actually deteriorates ASVR prediction accuracy. Therefore, incorporating nonlinear generalized autoregressive conditional heteroscedasticity (NGARCH) model into ASVR is employed for dealing with the problem of volatility clustering to best fit the forecast's system. Interestingly, quantum-based minimization algorithm is proposed in this study to tune the resulting coefficients between ASVR and NGARCH, in such a way that the ASVR/NGARCH composite model can achieve the best accuracy of prediction. Quantum optimization here tackles so-called NP-completeness problem and outperforms the real-coded genetic algorithm on the same problem because it accomplishes better approach to the optimal or near-optimal coefficient-found. It follows that the proposed method definitely obtains the satisfactory results because of highly balancing generalization and localization for composite model and thus improving forecast accuracy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.