Abstract

Currently, the automotive industry has made great advances in the incorporation of materials such as carbon fiber in high-performance cars. One of the main problems of these vehicles is warming, which is generated inside due to the heat transfer produced by solar radiation falling on the car, mainly on the roof. This research proposes the preparation of a composite material containing henequen natural fiber as a thermal barrier to be used as the roof of the car. In this research, 35 different laminates of 5 layers were prepared, combining carbon fiber, henequen natural fiber, fiberglass, and additives such as resin + Al2O3 or resin + Al. Reference samples were taken from stainless steel and one reference sample was extracted from the roof of the car. Considering the solar radiation and the heat transfer mechanisms, the temperature of the surface exposed to solar radiation was determined. The thermal conductivity of the 37 samples was determined, and the experimental results showed that the thermal conductivity of the steel with which the roof of the car is manufactured was 13.43 W·m−1·K−1 and that of the proposed laminate was 5.22 W·m−1·K−1, achieving a decrease in the thermal conductivity by 61.13%. Using the temperature and thermal conductivity data, the simulation (ANSYS) of the thermal system was performed. The results showed that the temperature inside the car with the carbon steel, which is currently used to manufacture high-performance cars, would be 62.34°C, whereas that inside the car with the proposed laminate would be 44.96°C, achieving a thermal barrier that allows a temperature difference of 17.38°C.

Highlights

  • The current technological breakthrough in many areas of research and industry has opened the need to look for new materials that have greater benefits than the materials that are commonly used in different applications

  • The interesting finding is that the carbon fiber laminates either combined with resin + Al2O3, resin + Al, or only resin always remain above sample 36, highlighting the property of thermal conductivity of carbon fiber

  • As regards the thermal behavior of the glass fiber (GF), it was observed that a third of the nine laminates have better thermal behavior than sample 36

Read more

Summary

Introduction

The current technological breakthrough in many areas of research and industry has opened the need to look for new materials that have greater benefits than the materials that are commonly used in different applications. In this context, researchers from all over the world have innovated different material systems. Composites being one of the most prominent material systems. These composites are made of two or more constituents [1], bringing as a consequence that each composite offers unique advantages by complementing each constituent with another. Other properties can be decreased and/or improved such as thermal conductivity, the coefficient of thermal expansion, the coefficient of friction, wear resistance, corrosion, and fatigue resistance [2, 3]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call