Abstract
The possibility of filling the recycled polyethylene terephthalate (rPET) with fly ash was studied to make a polymer composite material (PCM). It is shown that high adhesion between polymeric matrix and mineral filler is the key parameter to produce high performance PCM. For this purpose the acid-basic interaction as well as the thermodynamic work of adhesion between components of PCM were calculated. The technique of modifying fly ash filler with 5% concentration solution of sulfuric acid to increase acid-basic interaction has been elaborated. The resulting behavioral patterns are listed and compared to those of composites containing untreated fly ash particles.
Highlights
Disposal of waste materials from different types of industry has become an actual problem
When fly ash was treated with 5% solution H2SO4, the components of surface free energy (SFE) and were increased in comparison to unmodified fly ash on 43.1% and 7.7%, respectively
On the other hand when fly ash filler was modified with 5% concentration solution H2SO4 compressive strength of polymer composite material (PCM) sample was higher on 11.2%
Summary
Disposal of waste materials from different types of industry has become an actual problem. To solve this problem, two generalized routes come to mind: firstly, to reuse the disposed materials as received in some suitable applications, and secondly to recycle the waste in order to obtain a new material that may again find application in the parent or in another industry [1,2,3,4]. Electrical, thermal, optical and processing properties of the polymer with the addition of filler materials has become a very popular research interest to make a composite material [6], which can be defined as a combination of two or more materials that results in better properties than those of the individual components used alone [7]. The main advantages of composite materials are their high strength and stiffness, improved fatigue life, corrosion resistance, combined with low density, when compared with bulk materials, allowing for a weight reduction in the finished part [8, 9]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.