Abstract

The histone variant macroH2A (mH2A) has been implicated in transcriptional repression, but the molecular mechanisms that contribute to global mH2A-dependent genome regulation remain elusive. Using chromatin immunoprecipitation sequencing (ChIP-seq) coupled with transcriptional profiling in mH2A knockdown cells, we demonstrate that singular mH2A nucleosomes occupy transcription start sites of subsets of both expressed and repressed genes, with opposing regulatory consequences. Specifically, mH2A nucleosomes mask repressor binding sites in expressed genes but activator binding sites in repressed genes, thus generating distinct chromatin landscapes that limit genetic or extracellular inductive signals. We show that composite nucleosomes containing mH2A and NRF-1 are stably positioned on gene regulatory regions and can buffer transcriptional noise associated with antiviral responses. In contrast, mH2A nucleosomes without NRF-1 bind promoters weakly and mark genes with noisier gene expression patterns. Thus, the strategic position and stabilization of mH2A nucleosomes in human promoters defines robust gene expression patterns.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.