Abstract
We introduce a discrete model for binary spin–orbit-coupled Bose–Einstein condensates trapped in a deep one-dimensional optical lattice. Two different types of the couplings are considered, with spatial derivatives acting inside each species, or between the species. The discrete system with inter-site couplings dominated by the spin–orbit coupling (SOC), while the usual hopping is negligible, emulates condensates composed of extremely heavy atoms, as well as those with opposite signs of the effective atomic masses in the two components. Stable localized composite states of miscible and immiscible types are constructed. The effect of the SOC on the immiscibility–miscibility transition in the localized complexes, which emulates the phase transition between insulating and conducting states in semiconductors, is studied.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Physics B: Atomic, Molecular and Optical Physics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.