Abstract

Function approximation accuracy and computational cost are two major concerns in approximation-based adaptive fuzzy control. In this paper, a model reference composite learning fuzzy control strategy is proposed for a class of affine nonlinear systems with functional uncertainties. In the proposed approach, a modified modeling error that utilizes data recorded online is defined as a prediction error, a linear filter is applied to estimate time derivatives of plant states, and both the tracking error and the prediction error are exploited to update parametric estimates. It is proven that the closed-loop system achieves semiglobal practical exponential stability by an interval-excitation condition which is much weaker than a persistent-excitation condition. Compared with a concurrent learning approach that has the same aim as this study, the computational cost of the proposed approach is significantly reduced for the guarantee of accurate function approximation. An illustrative example of aircraft wing rock control has been provided to verify effectiveness of the proposed control strategy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.