Abstract

This article presents a control scheme for robot manipulators with the consideration of output error constraints, unknown dynamics, and bounded disturbances. A modified virtual input variable in the second stage design of the dynamic surface control scheme is proposed, which can enhance the robustness of the controller. Bounded disturbances due to the situations that the base is not well fixed if the robot manipulator is mounted at a mobile platform are considered and suppressed. Besides, the detailed implementation process of the composite learning laws adopted for enhancing the radial basis function neural network is presented. Lyapunov stability analysis verifies that the proposed control scheme ensures the trajectory tracking errors stay within predefined boundaries and parameter estimate errors converge without a stringent condition termed persistent excitation. Experimental results show the superiority of the proposed controller regarding parameter estimation and tracking capabilities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.