Abstract

When an entangled state evolves under local unitaries, the entanglement in the state remains fixed. Here we show the dynamical phase acquired by an entangled state in such a scenario can always be understood as the sum of the dynamical phases of its subsystems. In contrast, the equivalent statement for the geometric phase is not generally true unless the state is separable. For an entangled state an additional term is present, the mutual geometric phase, that measures the change the additional correlations present in the entangled state make to the geometry of the state space. For $N$ qubit states we find this change can be explained solely by classical correlations for states with a Schmidt decomposition and solely by quantum correlations for W states.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.