Abstract

Different sieve particle sizes P1 (Whole), P2 (≤0.212 mm) and P3 (≤0.125 mm) of water chestnut flour (WCF) were studied for proximate composition, mineral content, physico-chemical, functional, pasting and antioxidant properties in comparison to refined wheat flour (WF). WCF had significantly higher levels of fiber, resistant starch, mineral (K, Mg, Zn, and Cu), phenolics and flavonoids than WF in the order (P1 > P2 > P3 > WF). Increase in flour fineness decreased antioxidant activity (P1 > P2 > P3) with P1 having highest phenolic (4.72 mg GAE/g), flavonoid (2.46 mg QE/g) content. Pasting properties of P1 were significantly lower than WF but significantly increased with increase in flour fineness. Quality of flat bread produced from WCF-WF blends significantly varied with particle size and blending. Bake loss and baking time significantly decreased while shrinkage increased with decrease in particle size. L* value decreased with blending but showed an irregular trend with variation in particle size. (WF > P2 ≥ P3 > P1). Baking decreased DPPH scavenging activity more in WF bread (46.68%) than WCF bread (P1 = 17.71%, P2 = 16.45%, P3 = 19.63%). Baking decreased total phenolic and flavonoid content by 49 and 20% in wheat & 38 and 16% in WCF respectively while significantly increased the resistant starch content in the order (P3 > P2 > P1 > WF). This shows better retention of antioxidant activities and greater stability of WCF phenolics than WF phenolics during baking. Sensory analysis showed WCF breads had fair acceptability due to their characteristic flavor. Thus, gluten free WCF bread is also antioxidant rich with ample resistant starch content than WF breads.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call