Abstract

A transition metal coordination polymer (CP), [Cd(Hdpcp)]n (Cd-CP) was prepared based on 3-(2,4-dicarboxyphenyl)-6-carboxypyridine ligand (H3dpcp), and then its composite Eu@Cd-CP was synthesized by the post-modification through loading Eu3+ ions on Cd-CP. Eu@Cd-CP has outstanding fluorescence stability in aqueous solution with a wide range of pH. Furthermore, Eu@Cd-CP can distinguish sodium salicylate (SS) and sodium dehydroacetate (SA) in some food additives by quenching the characteristic fluorescence of Eu3+ ion. Eu@Cd-CP is the first known CP-based fluorescent probe for selective detection of SS and SA. In addition, the fluorescence mechanisms of discerning above analytes by Eu@Cd-CP have been thoroughly evaluated. It has found that synergistic effect of the dynamic process, photoinduced electron transfer (PET) process, energy absorption competition, and formation of Eu-O bonding interactions in sensing SA lead to the fluorescence quenching of Eu@Cd-CP. The fluorescence response mechanism of Eu@Cd-CP with SA is ascribed to the combination of the dynamic process, PET process, and energy absorption competition. A series of portable devices based on Eu@Cd-CP including fluorescence test strips, lamp beads, and composite films were developed to discern SS and SA via visual changes in luminescence color. This composite material can be potentially used as a multifunctional fluorescent probe for practical applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.