Abstract
AbstractLength‐biased sampling data are often encountered in the studies of economics, industrial reliability, epidemiology, genetics and cancer screening. The complication of this type of data is due to the fact that the observed lifetimes suffer from left truncation and right censoring, where the left truncation variable has a uniform distribution. In the Cox proportional hazards model, Huang & Qin (Journal of the American Statistical Association, 107, 2012, p. 107) proposed a composite partial likelihood method which not only has the simplicity of the popular partial likelihood estimator, but also can be easily performed by the standard statistical software. The accelerated failure time model has become a useful alternative to the Cox proportional hazards model. In this paper, by using the composite partial likelihood technique, we study this model with length‐biased sampling data. The proposed method has a very simple form and is robust when the assumption that the censoring time is independent of the covariate is violated. To ease the difficulty of calculations when solving the non‐smooth estimating equation, we use a kernel smoothed estimation method (Heller; Journal of the American Statistical Association, 102, 2007, p. 552). Large sample results and a re‐sampling method for the variance estimation are discussed. Some simulation studies are conducted to compare the performance of the proposed method with other existing methods. A real data set is used for illustration.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.