Abstract

In this paper, the regulation problem of a class of nonlinear singularly perturbed discrete-time systems is investigated. Using the theory of singular perturbations and time scales, the nonlinear system is decoupled into reduced-order slow and fast (boundary layer) subsystems. Then, a composite controller consisting of two sub-controllers for the slow and fast subsystems is developed using the discrete-time state-dependent Riccati equation (D-SDRE). It is proved that the equilibrium point of the original closed-loop system with a composite controller is locally asymptotically stable. Moreover, the region of attraction of the closed-loop system is estimated by using linear matrix inequality. One example is given to illustrate the effectiveness of the results obtained.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call