Abstract

This paper focuses on lateral motion stability con-trol of an in-wheel drive electric vehicle while accounting for un-known external disturbances and input time delay. A predictive sliding mode control using super twisting techniques is designed to mitigate the consequences of input time delay, tracking inac-curacy, and chattering phenomenon. Further, to degrade the lumped disturbances, a disturbance observer (DOB) is empha-sized to estimate unknown disturbances and facilitate feedfor-ward compensation for control. Then, a composite control structure combining predictive super-twisting sliding mode control (STSMC) and DOB is proposed to realize precise tracking uti-lizing appropriate disturbance estimation. To prove the closed-loop stability, a Lyapunov function-based analysis is performed. Simulation is carried out in MATLAB/Simulink to validate the proposed control, and two critical maneuvers are presented to demonstrate its effectiveness.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.