Abstract

An in-wheel motor electric vehicle has high unsprung mass because of its in-wheel motor, which decreases vehicle ride comfort and vehicle safety. This paper presents a controllable suspension employing an optimal design hybrid damping control strategy based on ideal skyhook and groundhook as a reference. A sliding mode controller is designed to make the plant track the ideal reference model. The exponent reaching law based on fraction order calculus is used to improve the dynamic quality of the sliding mode motion. Moreover, a dynamics model of in-wheel motor electric vehicle suspension is established in Adams. The joint simulation of Adams and Matlab prove that the designed controller can reduce tire dynamic load effectively, maintain better ride comfort, and suppress vibration better than the integer order exponential reaching law. Furthermore, the proposed controller has better composite performance than the general hybrid damping control strategy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.