Abstract

A Mg phosphate coating was prepared on home-developed Mg–Zn–Ca alloy to improve its anticorrosion performance in simulated body fluid (SBF, Kokubo solution). The coating was prepared by micro-arc oxidation (MAO) method at the working voltage of 120–140V. Evident improvement of anticorrosion was obtained even through the surface was porous. To further diminish the contact with SBF, a TiO2 layer was coated on the porous MAO layer by sol–gel dip coating followed by an annealing treatment. The coatings were characterized by X-ray diffractometry (XRD), scanning electron microscopy (SEM) and energy dispersion spectroscopy (EDS). The electrochemical performance of the MAO and TiO2/MAO coated alloys was evaluated by anodic polarization measurements. The pores on Mg phosphate layer provided accommodation sites for the subsequent TiO2 sol–gel coating which sealed the pores and hence significantly enhanced the anticorrosion while single MAO coating only improve anticorrosion within a limited range. The present result indicates that fabrication of composite coatings is a significant strategy to improve the corrosion resistance of Mg–Zn–Ca alloy and other alloys, thus enhancing the potential of using Mg alloys as bio-implants.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.