Abstract

The new approach to obtaining ceramic materials in the Na2O–CaO–SiO2–P2O5 system based on the binder—an aqueous solution of sodium silicate and filler—hydroxyapatite was shown in current research. After heat treatment at 500 °C and 700 °C, the ceramic samples included non-reacted hydroxyapatite Ca10(PO4)6(OH)2, β-rhenanite β-NaCaPO4 and sodium calcium silicophosphate Na2Ca4(PO4)2SiO4. An increase in temperature to 900 °C and 1100 °C allowed to obtain ceramic materials with the following phases: devitrite Na2Ca3Si6O16, β-rhenanite β-NaCaPO4, β-wollastonite β-CaSiO3, and silicon dioxide SiO2. The strength of ceramic samples rose with increasing temperature from ≈7.0 MPa (bending) and ≈7.2 MPa (compression) at 500 °C to ≈9.5 MPa (bending) and ≈31.6 MPa (compression) at 1100 °C. At the same time, the apparent density decreased from 1.71 g/cm3 to 1.15 g/cm3. The top of the compressive strength equal to 31.6 MPa was observed when the apparent density was 1.15 g/cm3. Obtained ceramics consisted of biocompatible phases, widely studied in the literature; thus, it confirms the possibility of using an aqueous solution of sodium silicate in medical materials science.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.