Abstract

Although sodium-ion hybrid supercapacitor (Na-ion HSC) has attracted great interest, exploitation of suitable cathode materials for reversible Na+ insertion reaction remains a challenge. Herein, a novel binder-free composite cathode with highly crystallized NiFe Prussian blue analogue (NiFePBA) nanocubes in-situ grown on reduced graphene oxide (rGO) was fabricated via sodium pyrophosphate (Na4P2O7)-assisted co-precipitation and the subsequent ultrasonic spraying and chemical reduction. Profiting from the low-defect PBA framework and close interface contact of PBA and conductive rGO, the NiFePBA/rGO/carbon cloth composite electrode exhibits a high specific capacitance of 451F g−1, remarkable rate performance and satisfactory cycling stability in aqueous Na2SO4 electrolyte. Impressively, the aqueous Na-ion HSC assembled with the composite cathode and activated carbon (AC) anode manifests a high energy density of 51.11 Wh kg−1, superb power density of 10 kW kg−1 and the intriguing cycling stability. This work may open a door for scalable fabrication of binder-free PBA cathode material for aqueous Na-ion storage.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call