Abstract

Biopolymers based on starch, cellulose and proteins extracted directly from biomass with or without modification have been widely used as the natural resources to produce biodegradable plastic. Starch has several disadvantages: strong hydrophilic behavior and inferior mechanical properties when compared with synthetic polymers. Starch is also mostly soluble in water and will be decomposed before undergoing the gelatinization process. To provide resistance and mechanical strength of starch, several fillers (reinforcement) in the form of metal and natural materials are usually added to the polymer matrix. Zinc oxide (ZnO) nanoparticle and natural fiber as a lightweight material that is biocompatible, nontoxic, cost-effective and exhibit strong antibacterial activity can be considered as a reinforcement of starch-based bioplastic. The present study, the reinforcing effect of ZnO on the mechanical, antibacterial, and physical properties of bioplastic films in the form of cassava starch/chitosan/pineapple leaf fiber (PALF)/ZnO. The highest value of elongation at break is for 16 % ZnO-bioplastics which could be completely decomposed only 21 days in ordinary soil and only 18 days in seawater. The packaging tests using slice bread showed antimicrobial properties with no fungal growth for 30 days of bioplastic coatings with 10, 13, and 16 % ZnO NPs. The results in this study indicated that, the ZnO and PALF plays an important role in reinforcing the physical, mechanical, and antibacterial properties of starch/chitosan/PALF-based bioplastic.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.