Abstract

In this chapter, four main topics in composite blades of wind turbines including design, stress analysis, aeroelasticity, and fatigue are studied. For static analysis, finite element method (FEM) is applied and the critical zone is extracted. Moreover, geometry, layup, and loading of the turbine blades made of laminated composites are calculated and evaluated. Then, according to the stress analysis, critical layer is specified and safety factor is studied based on Tsai-Wu failure criterion. Aeroelasticity is the main source of instability in structures that are subjected to aerodynamic forces. One of the major reasons of instability is the coupling of bending and torsional vibration of flexible bodies, which is known as flutter and considered in this study. Numerical and analytical methods are applied for considering the flutter phenomenon of the blades. For numerical method, the FEM and Joint Aviation Requirements (JAR-23) standard and for analytical method, two-degree freedom flutter and Lagrange's equations are utilized. Also, lifetime prediction of a horizontal axis wind turbine composite blade is investigated. Accumulated fatigue damage modeling is employed as a damage estimation rule based on generalized material property degradation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call