Abstract

Back pain commonly arises from intervertebral disc (IVD) damage including annulus fibrosus (AF) defects and nucleus pulposus (NP) loss. Poor IVD healing motivates developing tissue engineering repair strategies. This study evaluated a composite injectable IVD biomaterial repair strategy using carboxymethylcellulose-methylcellulose (CMC-MC) and genipin-crosslinked fibrin (FibGen) that mimic NP and AF properties, respectively. Bovine ex vivo caudal IVDs were evaluated in cyclic compression-tension, torsion, and compression-to-failure tests to determine IVD biomechanical properties, height loss, and herniation risk following experimentally-induced severe herniation injury and discectomy (4 mm biopsy defect with 20% NP removed). FibGen with and without CMC-MC had failure strength similar to discectomy injury suggesting no increased risk compared to surgical procedures, yet no biomaterials improved axial or torsional biomechanical properties suggesting they were incapable of adequately restoring AF tension. FibGen had the largest failure strength and was further evaluated in additional discectomy injury models with varying AF defect types (2 mm biopsy, 4 mm cruciate, 4 mm biopsy) and NP removal volume (0%, 20%). All simulated discectomy defects significantly compromised failure strength and biomechanical properties. The 0% NP removal group had mean values of axial biomechanical properties closer to intact levels than defects with 20% NP removed but they were not statistically different and 0% NP removal also decreased failure strength. FibGen with and without CMC-MC failed at super-physiological stress levels above simulated discectomy suggesting repair with these tissue engineered biomaterials may perform better than discectomy alone, although restored biomechanical function may require additional healing with the potential application of these biomaterials as sealants and cell/drug delivery carriers.

Highlights

  • Intervertebral disc (IVD) injuries can result in herniation when the central nucleus pulposus (NP) tissue protrudes or extrudes through defects in the surrounding annulus fibrosus (AF)

  • Discectomy procedures alleviate many symptoms associated with IVD herniation but do not address the damage and loss of NP and AF tissues which can result in reherniation and recurrent pain [6,7,8,9,10]

  • This study investigated the combination of CMC-MC, an NP replacement, and FibGen, an AF sealant to restore IVD biomechanics after discectomy by restoring NP pressurization and AF tension

Read more

Summary

Introduction

Intervertebral disc (IVD) injuries can result in herniation when the central nucleus pulposus (NP) tissue protrudes or extrudes through defects in the surrounding annulus fibrosus (AF). Herniated IVD tissue can impinge upon surrounding nerves to cause radiculopathy with pain and disability in the back, neck, arms, and/or legs depending on the IVD level of the injury [1]. Current discectomy procedures do not replace the removed NP tissue or repair AF defects. There is a need to develop improved IVD repair strategies to prevent disc height loss, altered biomechanics, and accelerated degeneration from IVD injury and complications from discectomy procedures, including reherniation and recurrent pain at the same level [6,7,8,9,10]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call