Abstract

Magnetic particles have been recently considered as appealing functional fillers in composite membranes used for versatile purposes, for instance for the pervaporative dehydration of ethanol. The application of superparamagnetic or ferromagnetic materials with soft magnetic properties has been confirmed as a promising strategy to improve separation efficiency. Nevertheless, current studies seem to neglect the possibility of using hard magnetic membranes, even though they exhibit high value of saturation magnetization along with a high coercivity. To fill in the existing knowledge gap, in this study we presented the improvement of pervaporative ethanol dehydration process through the application of alginate membranes filled with hard magnets in the form of a Magnequench fine powder (MQFP). To provide an extensive analysis of their physicochemical and magnetic properties, both powder and composite membranes were comprehensively characterized by means of magnetometry, electron microscopy and a position annihilation lifetime spectroscopy. The presence of MQFP was confirmed to provide hard magnetic properties to MQFP/alginate membranes, particularly for materials with lower content of magnetic powder (1 wt% MQFP). The results showed that the magnetic properties, amount and size of MQFP particles had a significant impact on the efficiency and separation properties of the water/ethanol pervaporation process. Consequently, the highest value of separation factor (12271) was reached for an alginate membrane filled with 1 wt% of MQFP powder with the grains size of 15 µm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.