Abstract
A composite adaptive locally weighted learning (LWL) control approach is proposed for a class of uncertain nonlinear systems with system constraints, including state constraints and asymmetric control saturation in this paper. The system constraints are tackled by considering the control input as an extended state variable and introducing barrier Lyapunov functions (BLFs) into the backstepping procedure. The system uncertainty is approximated by a composite adaptive LWL neural networks (NNs), in which a prediction error is constructed by using a series-parallel identification model, and NN weights are updated by both the tracking error and the prediction error. The update law with composite error feedback improves uncertainty approximation accuracy and trajectory tracking accuracy. The feasibility and effectiveness of the proposed approach have been demonstrated by formal proof and simulation results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.