Abstract

This paper focuses on online recorded-data-based composite adaptive fuzzy bipartite consensus control for uncertain fractional-order multiagent systems with interconnected terms and external disturbances by employing a switched-threshold-based event-triggered mechanism (ETM) under the backstepping structure. Fuzzy logic system is used as a universal function approximation to deal with function uncertainties that are not prone to model in the system. A new composite learning adaptive parameter design scheme that synthesizes both prediction error and tracking error is developed to enhance the tracking performance, where the prediction error is raised from the utilization of online recorded data and instantaneous data. A unique switched-threshold-based ETM is introduced, in which the information transmission between the sensor and the controller is imposed on one of the individuals. One merit of this work consists in that it can automatically and rapidly switch and adjust between the fixed threshold and relative threshold ETM according to the amplitude of input signals to balance the network resources and impede the occurrence of pulse phenomenon. In addition, it is theoretically proven that the proposed scheme can ensure that all internal signals of the closed-loop system are bounded and achieve local bipartite consistent errors through the fractional Lyapunov stability criterion. Finally, a numerical example is provided to confirm the feasibility of the proposed approach.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call