Abstract
Image retargeting has been applied to display images of any size via devices with various resolutions (e.g., cell phone, TV monitors). To fit an image with the target resolution, certain unimportant regions need to be deleted or distorted and the key problem is to determine the importance of each pixel. Existing methods predict pixel-wise importance in a bottom-up manner via eye fixation estimation or saliency detection. In contrast, the proposed algorithm estimates the pixel-wise importance based on a top-down criterion where the target image maintains the semantic meaning of the original image. To this end, several semantic components corresponding to foreground objects, action contexts, and background regions are extracted. The semantic component maps are integrated by a classification guided fusion network. Specifically, the deep network classifies the original image as object or scene-oriented, and fuses the semantic component maps according to classification results. The network output, referred to as the semantic collage with the same size as the original image, is then fed into any existing optimization method to generate the target image. Extensive experiments are carried out on the RetargetMe dataset and S-Retarget database developed in this work. Experimental results demonstrate the merits of the proposed algorithm over the state-of-the-art image retargeting methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.