Abstract

Conservation of polarization is an important requirement for reliable single-photon emitters, which, in turn, are essential building blocks for light-based quantum information processing. In this work, we study the exciton-spin dynamics in a double quantum dot under the combined effects of electron-hole exchange and Förster resonance energy transfer. By means of numerical solutions of the quantum master equation, we simulate the time-dependent spin polarization for two neighboring dots. According to our results, under some conditions, the depolarization caused by the electron-hole exchange may be slowed by the near field-induced interdot energy transfer, suggesting a new mechanism to extend the exciton coherence time. This opens doors to alternative schemes for improved solid-state quantum light sources.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call