Abstract

We present a composable design scheme for the development of hybrid quantum/classical algorithms and workflows for applications of quantum simulation. Our object-oriented approach is based on constructing an expressive set of common data structures and methods that enable programming of a broad variety of complex hybrid quantum simulation applications. The abstract core of our scheme is distilled from the analysis of the current quantum simulation algorithms. Subsequently, it allows a synthesis of new hybrid algorithms and workflows via the extension, specialization, and dynamic customization of the abstract core classes defined by our design. We implement our design scheme using the hardware-agnostic programming language QCOR into the QuaSiMo library. To validate our implementation, we test and show its utility on commercial quantum processors from IBM, running some prototypical quantum simulations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.