Abstract

Let $S=K[x_1,\ldots,x_n]$ be the polynomial ring over a field and $A$ a standard graded $S$-algebra. In terms of the Gröbner basis of the defining ideal $J$ of $A$ we give a condition, called the $x$-condition, which implies that all graded components $A_k$ of $A$ have linear quotients and with additional assumptions are componentwise linear. A typical example of such an algebra is the Rees ring $\mathcal{R}(I)$ of a graded ideal or the symmetric algebra $\textrm{Sym}(M)$ of a module $M$. We apply our criterion to study certain symmetric algebras and the powers of vertex cover ideals of certain classes of graphs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.