Abstract
The design of digital circuits on recent technologies brings several challenges, among which robustness to variations stands out. Variation sources are multiple, and the evolution of integrated circuit fabrication techniques increases the number and relevance of such sources, and the complexity of ensuring circuit robustness against them. Some design paradigms naturally counter variations of one or more types. Asynchronous self-timed design is one such paradigm that can provide robustness to process, voltage, temperature, ageing and IR drop variations, to cite some of the main types. This paper proposes an enhancement to the Pulsar environment, a recently proposed open source automated flow for the design of self-timed clockless circuits.The six components proposed here enable describing choices and decisions on the flow of data tokens inside asynchronous circuits.Design capture in Pulsar can then employ these. To implement the abstract (synthesis-enabled) components, the paper also bringsthe proposal of the handshaking mutex, a versatile complex gate that eases the design of probe and arbiter, the two most complex among the new components. Results demonstrate the new version of Pulsar is more powerful than the previous, baseline, version, enabling the design capture and the automated synthesis steps of more complex asynchronous self-timed circuits. They also indicate the handshaking mutex operates correctly, and with a good level of attested fairness.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.