Abstract

The saponins in different parts of Gynostemma pentaphyllum were analyzed via UPLC-Q-TOF-MS~E. A total of 46 saponins were identified, and the underground part had 26 saponins more than the aboveground part, most of which were trisaccharide saponins. The rat model of hyperlipidemia was established with high-fat diet. This study explored the lipid-lowering activity of total saponins in the underground part of G. pentaphyllum, so as to provide a theoretical basis for the comprehensive utilization of the underground part of G. pentaphyllum. A total of 99 healthy SD rats were randomly assigned into a blank group, a model group, a positive drug group, an aboveground total saponins group, and low-, medium-, and high-dose underground total saponins groups. Except the blank group, the other groups were fed with high-fat diet for 6 weeks. Then, the blood was collected from the orbital cavity to determine whether the modeling was successful according to the serum levels of total cholesterol(TC) and triglyceride(TG). After intragastric administration of the corresponding agents for 30 continuous days, the physical state of the rats were observed, and the body weight and liver specific gravity were measured. Furthermore, the levels of TC, TG, low-density lipoprotein cholesterol(LDL-C), high-density lipoprotein cholesterol(HDL-C), alanine transaminase(ALT), aspartate transaminase(AST), bilirubin, and total bile acids in serum, as well as the levels of superoxide dismutase(SOD), malondialdehyde(MDA), peroxidase proliferator-activated receptor(PPAR-γ) in the liver tissue, were determined. The pathological changes of liver was observed via HE staining. The results showed that the aboveground total saponins and medium-and high-dose underground total saponins can treat hepatocyte steatosis, lower TC, TG, LDL-C, ALT, AST, total bilirubin, MDA, and PPAR-γ levels, and increase HDL-C and SOD levels in the model rats. The effect tended to be more obvious with the increase in dosage. Therefore, the total saponins in the underground part of G. pentaphyllum have good pharmacological effect of reducing blood lipid, which provides a theoretical basis for the comprehensive utilization of the underground part of G. pentaphyllum.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call