Abstract

Abstract This study aims to establish a rapid quantitative analysis method for biochar based on near infrared spectroscopy (NIRS) technology. Near infrared spectra of 163 samples in the 10000–3800 cm–1 (1000–2632 nm) range were collected, and the contents of fixed carbon (FC), volatile matter (VM) and ash of samples were also analyzed. A partial least square (PLS) model for FC, VM and Ash was established after the model spectral ranges were optimized, the optimal factors were determined, and the raw spectra were pretreated by multiple scatter correction and second derivative (MSC + SD) method. Finally, the prediction performance of predictive model was evaluated. The results showed that the PLS model had a good prediction ability, and the predicted coefficient R2p of actual values vs prediction values for FC, VM and ash were 0.9423, 0.9517 and 0.9265, respectively. Root mean square error of prediction (RMSEP) was 0.1074, 0.1201 and 0.1243, and ratios of prediction to deviation (RPD) were 3.51, 4.28 and 2.03, respectively. The PLS model had good accuracy and precision for both of FC and VM, and could be used as a quantitative method for FC and VM contents analysis. Nevertheless, PLS model need to improve the precision for Ash analysis according to RPD value. This method provides a fast and effective technical means for the quantitative analysis of biochar components.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call