Abstract

As for the problem that component gas characteristic spectrum lines overlaps seriously in the identification of Mixed Gas, Support Vector Machine is introduced for the identification, and an one-by-one identification methods for Mixed Gas classification based on the binary category identification model based on the support vector machine is proposed in this article. One-by-one category identification is carried out for each mixed gas when the characteristic spectrum lines are overlapped seriously and is transformed in high dimensional space into linear by SVM kernel function transformation. In the experiment for gas component identification of a natural gas, we compare the recognition results affected by different kernel functions, data preprocessing, feature extraction, numbers of training samples and other conditions. The results show that the method has the correct recognition rate of over 97% for the natural gas whose concentration is over 1%, and it has a great promotional value both in theory and practical application.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.