Abstract

This paper describes a new technique for determining the pin power in heterogeneous three-dimensional calculations. It is based on a domain decomposition with overlapping subdomains and a component mode synthesis (CMS) technique for the global flux determination. Local basis functions are used to span a discrete space that allows fundamental global mode approximation through a Galerkin technique. Two approaches are given to obtain these local basis functions. In the first one (the CMS method), the first few spatial eigenfunctions are computed on each subdomain, using periodic boundary conditions. In the second one (factorized CMS method), only the fundamental mode is computed, and we use a factorization principle for the flux in order to replace the higher-order eigenmodes. These different local spatial functions are extended to the global domain by defining them as zero outside the subdomain. These methods are well fitted for heterogeneous core calculations because the spatial interface modes are taken into account in the domain decomposition. Although these methods could be applied to higher-order angular approximations—particularly easily to an SPN approximation—the numerical results we provide are obtained using a diffusion model. We show the methods’ accuracy for reactor cores loaded with uranium dioxide and mixed oxide assemblies, for which standard reconstruction techniques are known to perform poorly. Furthermore, we show that our methods are highly and easily parallelizable.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.