Abstract

This research integrates component mode synthesis with a multilevel design optimization strategy to develop a design methodology for making the dynamical modification of complex structures simpler and tractable. The component mode synthesis formulates the eigenvalue equation of the entire structure in terms of vibration characteristics of local structure components. With this particular feature, the component mode synthesis helps to facilitate a two-stage procedure for the dynamic modification of a complex structure; the lower-level design optimization modifies the local structure components whose performances are prescribed by the optimal solution of the upper-level design optimization. The paper first discusses the formulation and the derivation of the Kuhn-Tucker necessary conditions for the proposed design optimization procedure and then presents numerical examples to demonstrate its numerical implementation and applicability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call