Abstract

Cloud service providers improve resource utilization by co-locating latency-critical (LC) workloads with best-effort batch (BE) jobs in datacenters. However, they usually treat multi-component LCs as monolithic applications and treat BEs as “second-class citizens” when allocating resources to them. Neglecting the inconsistent interference tolerance abilities of LC components and the inconsistent preemption loss of BE workloads can result in missed co-location opportunities for higher throughput. We present Rhythm , a co-location controller that deploys workloads and reclaims resources rhythmically for maximizing the system throughput while guaranteeing LC service’s tail latency requirement. The key idea is to differentiate the BE throughput launched with each LC component, that is, components with higher interference tolerance can be deployed together with more BE jobs. It also assigns different reclamation priority values to BEs by evaluating their preemption losses into a multi-level reclamation queue. We implement and evaluate Rhythm using workloads in the form of containerized processes and microservices. Experimental results show that it can improve the system throughput by 47.3%, CPU utilization by 38.6%, and memory bandwidth utilization by 45.4% while guaranteeing the tail latency requirement.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.