Abstract
Counting the models of a propositional formula is an important problem: for example, it serves as the backbone of probabilistic inference by weighted model counting. A key algorithmic insight is component caching (CC), in which disjoint components of a formula, generated dynamically during a DPLL search, are cached so that they only have to be solved once. In the recent years, driven by SMT technology and probabilistic inference in hybrid domains, there is an increasing interest in counting the models of linear arithmetic sentences. To date, however, solvers for these are block-clause implementations, which are nonviable on large problem instances. In this paper, as a first step in extending CC to hybrid domains, we show how propositional CC systems can be leveraged when limited to piecewise polynomial densities. Our experiments demonstrate a large gap in performance when compared to existing approaches based on a variety of block-clause strategies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the AAAI Conference on Artificial Intelligence
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.