Abstract

A component-based methodological approach to derive distributed implementations of parallel ODE solvers is proposed. The proposal is based on the incorporation of explicit constructs for performance polymorphism into a methodology to derive group parallel programs of numerical methods from SPMD modules. These constructs enable the structuring of the derivation process into clearly defined steps, each one associated with a different type of optimization. The approach makes possible to obtain a flexible tuning of a parallel ODE solver for several execution contexts and applications. Following this methodological approach, a relevant parallel numerical scheme for solving stiff ODES has been optimized and implemented on a PC cluster. This numerical scheme is obtained from a Radau IIA Implicit Runge-Kutta method and exhibits a high degree of potential parallelism. Several numerical experiments have been performed by using several test problems with different structural characteristics. These experiments show satisfactory speedup results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.