Abstract

Many segmentation algorithms in medical imaging rely on accurate modeling and estimation of tissue intensity probability density functions. Gaussian mixture modeling, currently the most common approach, has several drawbacks, such as reliance on a Gaussian model and iterative local optimization used to estimate the model parameters. It also does not take advantage of substantially larger amount of data provided by 3D acquisitions, which are becoming standard in clinical environment. We propose a novel and completely non-parametric algorithm to estimate the tissue intensity probabilities in 3D images. Instead of relying on traditional framework of iterating between classification and estimation, we pose the problem as an instance of a blind source separation problem, where the unknown distributions are treated as sources and histograms of image subvolumes as mixtures. The new approach performed well on synthetic data and real magnetic resonance imaging (MRI) scans of the brain, robustly capturing intensity distributions of even small image structures and partial volume voxels.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.