Abstract
The effects of pressure and shear rate on the miscibility of binary blends comprising bisphenol-A polycarbonate (PC) and low molecular weight poly(methyl methacrylate) (PMMA) were investigated using a capillary rheometer. Both pressure and shear rate affected the miscibility. The examination of an extruded strand of the blend provided information about the cause of the phase change. Under high pressure, pressure-induced demixing occurred at temperatures below the lower critical solution temperature (LCST) of the blend. Consequently, the extruded strand became opaque throughout. During shear-induced mixing/demixing, a part of the strand became opaque because of the distribution of the shear rate in the strand. For example, during shear-induced demixing, only the exterior of the strand, i.e., the high shear rate region, became opaque. Above the LCST, shear-induced mixing occurred, and only the center region of the strand became opaque.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.