Abstract

Practical application of high energy density lithium-metal batteries (LMBs) has remained elusive over the last several decades due to their unstable and dendritic electrodeposition behavior. Solid polymer electrolytes (SPEs) with sufficient elastic modulus have been shown to attenuate dendrite growth and extend cycle life. Among different polymer architectures, network SPEs have demonstrated promising overall performance in cells using lithium metal anodes. However, fine-tuning network structures to attain adequate lithium electrode interfacial contact and stable electrodeposition behavior at extended cycling remains a challenge. In this work, we designed a series of comb-chain cross-linker-based network SPEs with tunable compliance by introducing free dangling chains into the SPE network. These dangling chains were used to tune the SPE ionic conductivity, ductility, and compliance. Our results demonstrate that increasing network compliance and ductility improves anode-electrolyte interfacial adhesion and reduces voltage hysteresis. SPEs with 56.3 wt % free dangling chain content showed a high Coulombic efficiency of 93.4% and a symmetric cell cycle life 1.9× that of SPEs without free chains. Additionally, the improved anode compliance of these SPEs led to reduced anode-electrolyte interfacial resistance growth and greater capacity retention at 92.8% when cycled at 1C in Li|SPE|LiFePO4 half cells for 275 cycles.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.