Abstract

This article presents a new approach employing constraint Hamiltonian system for the compliant motion control of a three-link manipulator with link flexibility and joint constraints. Two non-linear controllers consisting of force part and position part are first derived from constraint Hamiltonian system obtained by the Lagrange and Hamiltonian methods. The linear feedback controllers that satisfy the Lyapunov stability of the total constraint Hamiltonian system are then designed. Consequently, the compliant motion control system consisting of the sum of two non-linear controllers and corresponding linear feedback controllers is formulated. The compliant motion control strategy is accomplished by steering the end effector of the manipulator onto the constraint surface with the linear controllers, and subsequently, by executing a prescribed desirable motion with the non-linear controllers. Computer simulations are undertaken in order to demonstrate the effectiveness of the proposed control methodology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.