Abstract

Artificial joints have been much improved since their introduction but they still have a limited lifetime. In an attempt to increase their life by improving the lubrication acting within these prostheses, compliant layered polyurethane (PU) joints have been devised. These joints mimic the natural synovial joint more closely by promoting fluid film lubrication. In this study, tests were performed on compliant layer joints to determine their ability to function under a range of conditions. Both static and dynamic compression tests were undertaken on compliant artificial hip joints of two different radial clearances. Friction tests were also performed before and after static loading. In addition to this, knee wear tests were conducted to determine the suitability of a compliant layer in these applications. In the knee tests, variations in experimental testing conditions were investigated using both active and passive rotation and severe malalignment of the tibial inserts. The static compression tests together with the friction studies suggest that a small radial clearance is likely to result in 'grabbing' contact between the head and cup. The larger radial clearance (0.33 microm) did not exhibit these problems. The importance of the design of the compliant layer joints was highlighted with delamination occurring on the lateral bearings during the knee wear studies. The bearings with a layer 2 mm thick performed better than the bearings with a layer 3 mm thick. Tests conducted on flat PU bearings resulted in no delamination; therefore, it was concluded that the layer separation was caused by design issues rather than by material issues. It was found that, with careful material choice, consideration of design, and effective manufacturing techniques, the compliant layer joint functioned well and demonstrated durability of the union between the hard and soft layers. These results give encouragement for the suitability of these joints for clinical use.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.