Abstract

Part I of this paper (Liu et al., “Compliant assembly analysis including initial deviations and geometric nonlinearity, part I: Beam structure”) has studied the variation propagation of beam structures with consideration of initial deviations and geometric nonlinearity. In practices, plate structures are more commonly used in manufacturing fields, and the attempt of this paper is to expand previous methodology for the assembly process of orthotropic composite plate structures. Similarly, initial deviations and von Kármán-type geometric nonlinearity are introduced into variation analysis model, with Mindlin plate theory accounting for shear effect. The analyzed plates are set as orthotropic composite materials, which also preserve the compatibility with isotropic metal materials. Governing equations and corresponding finite element expressions can be obtained by applying the principle of virtual work. Also, a linearized model or noninitial model can be regarded as a degradation of origin governing equations. A variation analysis approach for plate structures is proposed to make more refined assembly variation predictions with consideration of initial deviations, fixture errors, and matching deviations. The verification of the developed method is implemented with case studies on springback prediction of two composite plates assembly.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call