Abstract
Abstract. Since 1 January 2017, ships berthed at the core ports of three designated “domestic emission control areas” (DECAs) in China should be using fuel with a sulfur content less than or equal to 0.5 %. In order to evaluate the impacts of fuel switching, a measurement campaign (SEISO-Bohai) was conducted from 28 December 2016 to 15 January 2017 at Jingtang Harbor, an area within the seventh busiest port in the world. This campaign included meteorological monitoring, pollutant monitoring, aerosol sampling and fuel sampling. During the campaign, 16 ship plumes were captured by the on-shore measurement site, and 4 plumes indicated the usage of high-SF (SF refers to the sulfur content of marine fuels). The average reduction of the mean ΔNOx∕ΔSO2 ratio from high-sulfur plumes (3.26) before 1 January to low-sulfur plumes (12.97) after 1 January shows a direct SO2 emission reduction of 75 %, consistent with the sulfur content reduction (79 %). The average concentrations of PM2.5 (particulate matter with a diameter less than 2.5 µm), NOx, SO2, O3 and CO during campaign were 147.85 µg m−3, 146.93, 21.91, 29.68 ppb and 2.21 ppm, respectively, among which NOx reached a maximum hourly concentration of 692.6 ppb, and SO2 reached a maximum hourly concentration of 165.5 ppb. The mean concentrations of carbonaceous and dominant ionic species in particles were 6.52 (EC – elemental carbon), 23.10 (OC – organic carbon), 22.04 (SO42-), 25.95 (NO3-) and 13.55 (NH4+) µg m−3. Although the carbonaceous species in particles were not significantly affected by fuel switching, the gas and particle pollutants in the ambient air exhibited clear and effective improvements due to the implementation of low-sulfur fuel. Comparison with the prevailing atmospheric conditions and a wind map of SO2 variation concluded a prompt SO2 reduction of 70 % in ambient air after fuel switching. Given the high humidity at the study site, this SO2 reduction will abate the concentration of secondary aerosols and improve the acidity of particulate matter. Based on the enrichment factors of elements in PM2.5, vanadium was identified as a marker of residual fuel ship emissions, decreasing significantly by 97.1 % from 309.9 ng m−3 before fuel switching to 9.1 ng m−3 after regulation, which indicated a crucial improvement due to the implementation of low-sulfur fuels. Ship emissions were proven to be significantly influential both directly and indirectly on the port environment and the coastal areas around Bohai Bay, where the population density reaches over 650 people per square kilometer. The results from this study report the positive impact of fuel switching on the air quality in the study region and indicate a new method for identifying the ship fuel type used by vessels in the area.
Highlights
Maritime transport is an important source of pollutants globally; it is one of the well-established culprits regarding the adverse effects of ship emissions on air quality (Eyring et al, 2005, 2010; Endresen et al, 2003; Fridell et al, 2008; Jalkanen et al, 2009; Liu et al, 2016; Viana et al, 2014), climate
From 2006 to 2009, NOx emissions from ships rose by approximately 7 % in the Baltic Sea, while SO2 and PM2.5 emissions decreased by 14 % and 20 %, respectively, which was mainly caused by fuel regulations that came into effect in 2006 (Jalkanen et al, 2014)
Research has shown that O3 can be totally destroyed if the NO source is large enough (Finlayson-Pitts and Pitts, 2000), and as our study site was located in a busy port, our data verify this finding
Summary
Maritime transport is an important source of pollutants globally; it is one of the well-established culprits regarding the adverse effects of ship emissions on air quality (Eyring et al, 2005, 2010; Endresen et al, 2003; Fridell et al, 2008; Jalkanen et al, 2009; Liu et al, 2016; Viana et al, 2014), climate In China, the average sulfur content of marine fuel (average SF) was 2.43 % (by mass, i.e., 24 300 ppm) before regulation (Liu et al, 2016), which was much higher than the sulfur content restriction of 10 ppm that was applied to inland fuels (Chinese national standards GB 19147-2013 and GB 17930-2013). This makes ships one of the prominent contributors of pollutant emissions in major port cities (Lai et al, 2013; HKEPD, 2014; Zhao et al, 2013). 14.1 % of SO2 emissions, 11.6 % of NOx emissions and 3.6 % of PM2.5 emissions within the Pearl River Delta region, China, were attributed to ships in 2013 (Li et al, 2016)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.